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Abstract: We perform Euclidean strong coupling expansions for Yang Mills theory on the

lattice at finite temperature. After setting up the formalism for general SU(N), we compute

the first few terms of the series for the free energy density and the lowest screening mass in

the case of SU(2). To next-to-leading order the free energy series agrees with that of an ideal

gas of glueballs. This demonstrates that in the confined phase the quasi-particles indeed

correspond to the T = 0 hadron excitations, as commonly assumed in hadron resonance gas

models. Our result also fixes the lower integration constant for Monte Carlo calculations of

the thermodynamic pressure via the integral method. In accord with Monte Carlo results,

we find screening masses to be nearly temperature independent in the confined phase.

This and the exponential smallness of the pressure can be understood as genuine strong

coupling effects. Finally, we analyse Padé approximants to estimate the critical couplings

of the phase transition, which for our short series are only ∼ 25% accurate. However, up

to these couplings the equation of state agrees quantitatively with numerical results on

Nt = 1 − 4 lattices.
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1. Introduction

The study of QCD at finite temperatures and densities is of growing phenomenological

interest for current and future heavy ion collision experiments, as well as for many astro-

physical problems. Due to the interaction strength, the usual perturbative treatment by a

series expansion in a small coupling constant fails for QCD. Perturbative failure persists

in the quark gluon plasma phase, where the weak coupling series is only defined up to a

certain maximal order (depending on the observable) before the well-known Linde infrared

problem sets in [1]. The best one can do is to calculate an effective theory for the infrared

modes with perturbatively calculable coefficients, such as dimensional reduction [2] or hard

thermal loops [3], and solve the effective theory for the soft modes on the lattice. The fully

non-perturbative alternative are of course lattice Monte Carlo simulations. For a recent

review of lattice results, see [4].

On the other hand, for temperatures below the plasma transition, no analytic ap-

proaches starting from the QCD Lagrangian are available at all. Even lattice simulations

of the equation of state are difficult in this regime, due to the exponential suppression

of the pressure with hadronic masses at low temperatures. Moreover, numerical determi-

nations of the pressure via the integral method [5] require to supply a lower integration

constant, corresponding to the pressure at some low temperature. Being unknown from

first principles, this constant is usually set to zero by hand, based on its assumed expo-

nential smallness. A successful description of lattice data below Tc is given by the hadron
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resonance gas model [6], which requires expansive experimental knowledge of the hadron

spectrum as well as some modelling.

In the present work we fill these gaps with an analytic treatment of the low temperature

phase by means of a strong coupling expansion of the lattice pure gauge theory. Contrary

to weak coupling expansions, strong coupling expansions are known to be convergent series

with a well-defined radius of convergence. In the early days of lattice gauge theory they

were used to get analytical results for some physical quantities of interest, such as glueball

masses [7] or the energy density of lattice Yang-Mills theories [8, 9]. These calculations

were done at zero temperature, i.e. for lattices with infinite spatial volume N3
s and tem-

poral extent Nt. To our knowledge, strong coupling expansions of the thermal partition

function have not been considered beyond the infinite coupling limit, thus neglecting gauge

fluctuations. In the Euclidean framework, an effective theory for Wilson lines can be con-

structed in the strong coupling limit [10], to be analysed by mean field methods. The only

series we are aware of is for the temperature-dependent string tension [11]. In Hamiltonian

approaches, an effective Hamiltonian for the strong coupling limit is constructed, and the

partition function still has to be solved for by some other means. For the pure gauge theory,

a deconfinement transition was predicted in this way [12]. More recent applications are to

systems with fermions at finite density, e.g. [13]. For a review of early work and references,

see [14].

In this work, we calculate Euclidean strong coupling series for the free energy density

and screening masses in SU(2) pure gauge theory with an infinite spatial volume and

a compactified temporal lattice extent Nt. In this way we can analytically study finite

temperature effects in the confined phase. The physical deconfinement phase transition

then corresponds to a finite convergence radius of the series, which we try to estimate

from the behaviour of the coefficients. In section 2 we set up the formalism of computing

strong coupling series for the free energy at finite temperature. section 3 gives the explicit

series for the SU(2) gauge theory and discusses how to leading order it coincides with that

of a non-interacting glueball gas, as well as estimates for the radius of convergence and

the phase transition. We also compare our results to Monte Carlo simulations. section 4

discusses strong coupling series of screening masses before we conclude in section 5.

2. The free energy density as strong coupling series

Consider SU(N) Yang-Mills theory on an Ω = N3
s × Nt lattice with lattice spacing a and

the Wilson action. Its partition function is given by

Z =

∫

DU e−S(U) =

∫

DU
∏

p

e−Sp(U)

=

∫

DU exp
∑

x

∑

1≤µ<ν≤4

β

(

1 −
1

N
ReTr Up(x)

)

, β =
2N

g2
. (2.1)

Here, g2 is the coupling constant of the corresponding continuum field theory, and the

elementary plaquettes are given in terms of link variables as Up(x) = Uµ(x)Uν(x+aµ̂)U †
µ(x+
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aν̂)U †
ν (x). The finite space-time box corresponds to a physical volume V = (aNs)

3 and

a temperature T = 1/(aNt). We are interested in the thermodynamic limit and always

consider the situation Ns → ∞.

To our knowledge, Euclidean strong coupling expansions have so far only been applied

to the T = 0 or Nt → ∞ situation. Formally, the partition function eq. (2.1) still resembles

a thermal system in this limit, with the lattice gauge coupling β playing the role of inverse

temperature. Correspondingly, strong coupling expansions in small β are often termed

‘high temperature expansions’ in the literature [15], even though the physical temperature

of the system is zero. We shall not repeat the derivation of the strong coupling expansion

here, but only give some central formulae required to fix the notation. For more details,

see [15] and references therein. To start with, the exponential of the action is expanded

in group characters χr(U) = TrDr(U), with Dr(U) a specific irreducible representation

matrix of U with dimension dr,

e−Sp(U) = c0(β)

[

1 +
∑

r 6=0

drar(β)χr(U)

]

, ar =
cr(β)

c0(β)
. (2.2)

The coefficients of the character expansion cr(β), and hence the effective expansion param-

eters ar(β), can be expanded in powers of β to yield the desired series in g−2. The series

can then be reorganised as a sum of graphs G with contributions Φ(G),

Z = c6Ω
0

∑

G

Φ(G), Φ(G) =

∫

DU
∏

p∈G

drp
arp

χrp
(U) =

∏

i

Φ(Xi), (2.3)

which factorise into disconnected components Xi, called polymers. Finally, using the for-

malism of moments and cumulants, one arrives at a cluster expansion for our quantity of

interest, the free energy density,

f̃ ≡ −
1

Ω
ln Z = −6 ln c0(β) −

1

Ω

∑

C=(X
ni
i

)

a(C)
∏

i

Φ(Xi)
ni . (2.4)

The sum is over all clusters C, which are defined as connected polymers Xi, and ni denotes

the multiplicity of a particular polymer in a cluster. The combinatorial factor a(C) is given

as

a(C) =
[X1, . . . ,X1,X2, . . . ,X2, . . . ,Xk]

n1!n2! . . . nk!
(2.5)

and equals 1 for clusters C which consist of only one polymer Xi. The so-called cumulant

[ ] can be expressed in terms of moments < >

[α, . . . , ζ] =
∑

P

(−1)n−1(n − 1)! < α, . . . , β > · · · < γ, . . . , δ > (2.6)

where n is the number of factors on the right hand side and the sum goes over all partitions

P . The moments are defined in such a way, that

< X1, . . . ,Xn >=

{

1, if every pair Xi,Xj is disconnected

0, otherwise
(2.7)
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This implies the equivalence between non-zero cumulants and connectedness of graphs,

[X1, . . . ,Xn] 6= 0 ⇔ X1 ∪ · · · ∪ Xn is connected. (2.8)

The contributing polymers Xi have to be objects with a closed surface since
∫

dUχr(U) = δr,0. (2.9)

This means the group integration projects out the trivial representation at each link. Group

integrals are calculated using integration formulae like

∫

dUχr(UV )χs(WU−1) =
δrs

dr
χr(V W ). (2.10)

Note that, because of translation invariance and connectedness, the number of identical

clusters at different positions is ∝ Ω, so that the lattice volume drops out of eq. (2.4) which

thus has a finite thermodynamic limit.

We now wish to apply this formalism to the case of non-zero physical temperature,

which is realized by keeping Nt = 1/(aT ) finite. The free energy density related to a

physical temperature T is defined as

F

V
= −

T

V
ln Z = −

1

NtN3
s

ln Z = f̃(Nt), (2.11)

i.e. it corresponds to the previously defined free energy density evaluated at finite Nt.

Evidently, all formulae above remain unchanged in this case. The only effect of finite Nt

with periodic boundary conditions is to change the set of contributing graphs {Xi}. The

physical free energy is then obtained by subtracting the formal free energy f̃(Nt = ∞),

which renormalises eq. (2.11) analogous to a subtraction of the divergent vacuum energy

in the continuum,

f(Nt, β) = f̃(Nt, β) − f̃(∞, β). (2.12)

2.1 Classification of graphs

Because of the difference in eq. (2.12), those graphs contributing in the same way to f̃(Nt)

and f̃(∞) drop out of the physical free energy. This is true for all polymers with time

extent less than Nt. The calculation thus reduces to graphs with a temporal size of Nt

on the finite Nt lattice, and graphs spanning or extending Nt on the infinite lattice. Such

graphs contribute either to f̃(Nt) or to f̃(∞) (and in some cases to both), and hence to the

difference in eq. (2.12). It is therefore clear from the outset that the strong coupling series

for the physical free energy starts at a higher order than the formal zero temperature free

energy. Moreover, the order of the leading contribution depends on Nt.

The lowest order graph existing due to the boundary condition on the finite Nt lattice,

but not on the infinite lattice, is a tube of length Nt with a cross-section of one single

plaquette, as shown in figure 1 (left). It forms a closed torus through the periodic boundary

and thus gives a non-vanishing contribution, which is easily calculated to be Φ(G1) = a4Nt

f ,

where the subscript ’f ’ indicates the fundamental representation. We need to sum up all
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Figure 1: Graphs that appear on the different lattices. Left: Leading order tube for Nt = 4.

Middle: First graph vanishing in the case Nt = 4. Right: Graph contributing on both, Nt = 4,∞,

lattices.

such graphs on the lattice. There are three spatial directions for the cross section of the

tube, giving a factor of 3. Translations in time take the graph into itself and do not give

a new contribution, while we get V Φ(G1) from all spatial translations. Together with the

1/Ω in eq. 2.4 this gives a factor of 1/Nt. The contribution of all tubes with all plaquettes

in the fundamental representation is thus

Φ(G1) =
3

Nt
a4Nt

f , (2.13)

which is - up to a sign - also the leading order result for the physical free energy. For SU(N)

with N ≥ 3 we have an additional factor of 2 because there are also complex conjugate

fundamental representations.

On the other hand, the same tube with both ends closed off by additional plaquettes as

in figure 1 (middle), contributes with Φ(G2) = d2
fa4Nt+2

f on an Nt = ∞, but not on a finite

Nt lattice. This is because the boundary plaquettes get identified as one doubly occupied

plaquette, which is not an allowed graph in the expansion. Therefore, Φ(G2) counts with

a negative sign relative to Φ(G1) towards the physical free energy. Here, translations in

time do produce a new graph, so the total contribution is

Φ(G2) = −3d2
fa4Nt+2

f . (2.14)

Figure 1 (right) shows a variation of these basic graphs, a cluster composed of two

double cubes. This is an example of a graph spanning Nt which contributes to both the

finite and infinite Nt lattices in the same way, thus cancelling out in the physical free energy.

(Note that the corresponding tube obtained without the plaquettes at Nt vanishes, it would

correspond to a single polymer with doubly occupied plaquettes at the slit). However, for

similar clusters composed of more than two polymers, this cancellation in general no longer

holds because of different assignments of combinatoric factors a(C) in the two cases.

2.2 Corrections to basic polymers

For fixed Nt, starting from the basic leading order polymers discussed in the last section,

one can now build up the corrections by adding decorations on each of them. These can be

either geometric, by adding additional fundamental representation plaquettes as in figure 2

(left), by inserting plaquettes in higher representations as in figure 2 (middle) or by adding

a whole new polymer as in figure 2 (right). Of course, these modifications can be combined.

Adding plaquettes in higher representations is possible only if at each and every link the
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Figure 2: Graphs contributing to the higher order terms of the series.

Clebsch-Gordan series of the representation matrices contains the trivial representation,

due to eq. (2.9).

We have already seen in section 2.1 that the order in af , to which the graphs contribute,

depends on Nt. Thus, the relative importance of different types of graphs changes with

Nt. For our example Nt = 4 considered in section 2.1, the leading correction to the basic

polymer on the Nt lattice is the insertion of one higher representation plaquette inside the

tube, contributing an additional factor ∼ a2
f , whereas the lowest order geometric decoration

is a shifted plaquette adding a factor ∼ a4
f . By contrast, on an Nt = 1 lattice contributions

to the leading order correction ∼ a2
f come from the basic polymer with a cross sectional

perimeter of six links. In general, geometric decorations enter earlier the lower Nt is. Thus

the summation of basic polymers and their decorations contains the complete result to

some fixed order O only for lattices Nt ≥ NO
t , with some NO

t which is obviously growing

with O. For lattices Nt < NO
t there are additional geometric decorations contributing

to O(aO
f ). In this work, we have calculated corrections to a4Nt

f through O(a8
f ) for which

NO
t = 5.

2.3 Summing basic polymers and their corrections for SU(2)

The contribution of all graphs of length Nt without geometric decorations can be summed

up in closed form. To do this we note that an additional plaquette in a representation r

as in figure 2 (middle) gives an additional factor of drar. In the case of SU(2), for which

we will describe the calculation, the only possibility is the j = 1 representation, because of

eq. (2.9) and
1

2
⊗

1

2
= 0 ⊕ 1 ⇒

1

2
⊗

1

2
⊗ 1 = 0 ⊕ 1 ⊕ 1 ⊕ 2 . (2.15)

The expansion parameters of the lowest representations are given by modified Bessel func-

tions and can be expanded in powers of the lattice coupling,

u ≡ a1/2 =
I2(β)

I1(β)
=

1

4
β −

1

96
β3 +

1

1536
β5 −

1

23040
β7 + O(β9),

v ≡ a1 =
I3(β)

I1(β)
=

2

3
u2 +

2

9
u4 +

16

135
u6 +

8

135
u8 + O(u10). (2.16)

For the following it is convenient to introduce the combination c = 1+ 3v− 4u2 and to use

u = af as the effective expansion parameter instead of β. It is well known from expansions

at zero temperature that apparent convergence is better for the series in u [7, 9], and we

observe the same phenomenon here.
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On the Nt lattice we can have 0 ≤ k ≤ Nt additional plaquettes at Nt places which

can be distributed in
(Nt

k

)

ways. Summing over all possible distributions gives

Φ1 = Φ(G1)

Nt
∑

k=0

(

Nt

k

)

(3v)k = Φ(G1) (1 + 3v)Nt . (2.17)

We can also add slits to get graphs as in figure 1 (right), consisting of more than one

polymer. Each slit gives a factor d2
fu2 = 4u2. The minimum number of slits, i, is 2 and

the combinatorial factor for such graphs is

a(C) = (i − 1)(−1)i−1. (2.18)

Summing these graphs with possible j = 1 plaquettes at the remaining places we get

Φ2 = Φ(G1)

Nt
∑

i=2

(

Nt

i

)

(i − 1)(−1)i−1
(

4u2
)i

Nt−i
∑

k=0

(

Nt − i

k

)

(3v)k

= Φ(G1)
[

cNt − (1 + 3v)Nt + 4u2Ntc
Nt−1

]

. (2.19)

Of course, we can make the same insertions to the graph figure 1 (middle) on the

infinite lattice with the difference that we have at most Nt − 1 places to add plaquettes.

The combinatorial factor now reads

a(C) = (−1)i, (2.20)

where i is again the number of slits and, in this case, it is unrestricted, giving

Φ3 = Φ(G2)
Nt−1
∑

i=0

(

Nt − 1

i

)

(−1)i
(

4u2
)i

Nt−1−i
∑

k=0

(

Nt − 1 − i

k

)

(3v)k

= Φ(G2)c
Nt−1

= Φ(G1)(−4u2Nt)c
Nt−1. (2.21)

For the final result we have to add the different pieces and get

Φ = Φ1 + Φ2 + Φ3 =
3

Nt
u4NtcNt . (2.22)

In higher gauge groups, the summation proceeds in a similar fashion with some slight

modification due to the fact that there are also complex conjugate representations.

3. The free energy density for SU(2)

Let us now give our central results for the gauge group SU(2). For Nt ≥ 5, the basic

polymers and their decorations can be summed up to give the general result

f(Nt, u) = −
3

Nt
u4NtcNt

[

1 + 12Ntu
4 −

1556

81
Ntu

6 +

(

83N2
t +

41417

243
Nt

)

u8 + O(u10)

]

.

(3.1)
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For Nt = 1− 4 there are additional geometric decorations, while some graphs contained in

the previous result do not contribute on those short lattices. We find

f(1, u) = −3u4 − 16u6 −
10913

54
u8 −

968642

405
u10 + O

(

u12
)

(3.2)

f(2, u) = −
3

2
u8 + 6u10 − 55u12 +

29236

135
u14 −

78413341

43740
u16 + O

(

u18
)

(3.3)

f(3, u) = −u12 + 6u14 − 50u16 +
37966

135
u18 −

856048

405
u20 + O

(

u22
)

(3.4)

f(4, u) = −
3

4
u16 + 6u18 − 56u20 +

51376

135
u22 −

2402453

810
u24 + O

(

u26
)

. (3.5)

The fact that only even powers of u appear is due to the reality of the SU(2) representations.

Note that for Nt = 1, our series is shorter since we did not compute the numerous geometric

decorations at the next order. From these expressions all other thermodynamic quantities

of interest can be constructed, in particular the pressure and energy density, respectively,

p = −f, e(β) =
1

6

d

dβ
f(β) =

1

6

du

dβ

d

du
f(u). (3.6)

Since the partition function is not directly measurable in Monte-Carlo simulations, the

pressure is usually obtained by the integral method [5], where the expectation values of

derivatives are computed and then integrated numerically,

p

T 4

∣

∣

∣

∣

β

β0

= N4
t

∫ β

β0

dβ′
[

6〈Tr U0
p 〉 − 3〈Tr U t

p + Tr U s
p 〉

]

,

where 〈Tr U0
p 〉 denotes the plaquette expectation value on symmetric (T = 0)lattices, Nt =

Ns → ∞, and 〈Tr U t,s
p 〉 are those of space-time and space-space plaquettes for Nt < Ns.

The lower integration limit is usually set to zero by hand, arguing with an exponentially

small pressure in the low temperature regime. Our results justify this assumption from

first principles and allow to fix that value if desired.

3.1 The free energy density from an ideal glueball gas

In weak coupling expansions of the pressure, the leading term is the well-known Stefan-

Boltzmann limit, describing a non-interacting gas of the constituent particles. It is now

interesting to ask how the QCD pressure can be interpreted in the strong coupling regime.

From the Wilson action it is clear that the strong coupling limit is also non-interacting.

However, as we have noted already, in this limit the pressure is zero. Considering strong

but finite couplings, and recalling the first orders of the T = 0 glueball mass calculations

for SU(2) [7],

m(A++
1 ) = −4 ln u + 2u2 −

98

3
u4 −

20984

405
u6 −

151496

243
u8,

m(E++) = −4 ln u + 2u2 −
26

3
u4 +

13036

405
u6 −

28052

243
u8, (3.7)

we observe that through second order in the expansion the free energy can be written as

f(Nt, u) = −
1

Nt

[

e−m(A++

1
)Nt + 2e−m(E++)Nt + O(u4)

]

. (3.8)
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Figure 3: The energy density in the confined phase on Nt = 2. Left: subsequent orders of the

strong coupling series. Right: Reconstructed from the L + M = 4, 6, 8 Padé approximants to the

strong coupling series of DC(u), eqs. (3.13), (3.16).

Here, the prefactors 1 and 2 before the exponentials correspond to the number of polarisa-

tions of the respective glueball states. Note that higher spin states start with ∼ 6 ln u [16],

thus contributing to the order ∼ u6Nt or higher in the free energy. Hence, through two non-

trivial orders our result is that of a free glueball gas, modified by higher order corrections.

This is a rather remarkable result. It allows to see from a first principle calculation that

the pressure is exponentially small in the confined phase, and that it is well approximated

by an ideal gas of quasi-particles which correspond to the T = 0 hadron excitations. While

this result might be expected on phenomenological grounds, it is nice to see it demonstrated

by an explicit calculation. This gives a quantum field theoretical explanation for the other-

wise plausible success of the hadron-resonance-gas model in reproducing the confined phase

equation of state [6].

3.2 Series analysis and phase transition

Strong coupling or high temperature expansions have been worked out to high orders

in many spin models, where various tools of series analysis can be applied to improve

convergence or extract additional information from the behaviour of the coefficients [9, 17].

In this section we explore some of these possibilities with our series. In particular, we are

interested in the radius of convergence of the strong coupling series. SU(N) pure gauge

theories at finite temperature have a true order parameter for confinement, the Polyakov

loop, and therefore there is a non-analytic phase transition separating the confined from

the deconfined phase. The associated critical coupling βc limits the radius of convergence

of the strong coupling series, provided there are no other singularities βs in the complex

β-plane with |βs| < βc.

For our later comparison with Monte Carlo results, it is particularly convenient to

consider the energy density. The curves for consecutive orders in the strong coupling

expansion for Nt = 2 are plotted in figure 3 (left). For β >∼ 1 convergence rapidly becomes

poor, announcing the proximity of the convergence radius.
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The most straightforward way to estimate the radius of convergence rn from the nth

order series would be via the ratio test of the series coefficients f2n,

rn =

∣

∣

∣

∣

f2n

f2n+2

∣

∣

∣

∣

1/2

. (3.9)

However, our series eqs. (3.1)–(3.5) are still rather short and no convergence in rn is visible.

Moreover, a singularity on the real axis requires the coefficients asymptotically to come

with equal signs. This is clearly not the case in our expressions for Nt > 1, which suggest

a nearby imaginary singularity.

A much better tool for our purposes is the analysis of Padé approximants to a function

constructed from its series expansion. These are the rational functions

[L,M ](u) ≡
a0 + a1u + · · · + aLuL

1 + b1u + · · · + bMuM
,

with coefficients ai, bi chosen such that they reproduce the power series of the function of

interest to the degree L + M . As rational functions, Padé approximants are known to give

good estimates of isolated pole singularities, whereas branch cuts or algebraic singularities

are less well reproduced (for a detailed discussion, see [17]). Furthermore, they give access

to several singularities, rather than just the nearest one. At the finite temperature phase

transition the free energy f(Nt, uc) with uc = u(βc) is continuous, with a discontinuous

first or second derivative, depending on the order of the transition. This type of singularity

is difficult to model for Padé approximants. Instead, the ‘heat capacity’

C(Nt, u) = u2 d2

du2
f(Nt, u) (3.10)

diverges at the phase transition as C(u) ∼ (uc −u)α with a critical exponent characteristic

of the transition. Its logarithmic derivative

DC(Nt, u) ≡
d

du
ln C(Nt, u) ∼ −

α

uc − u
(3.11)

has a simple pole with residue α and is therefore best suited for an analysis by Padé

approximants. We thus consider the series

DC(1, u) =
4

u

(

1 +
20

3
u2 +

54791

243
u4 +

1879249

486
u6

)

(3.12)

DC(2, u) =
8

u

(

1 −
45

28
u2 +

6445

196
u4 −

150331

92610
u6 +

31831541863

21003948
u8

)

(3.13)

DC(3, u) =
12

u

(

1 −
91

66
u2 +

4573

242
u4 −

2653298

59895
u6 +

114561591157

106732890
u8

)

(3.14)

DC(4, u) =
16

u

(

1 −
51

40
u2 +

29791

1800
u4 −

1262057

27000
u6 +

1055884297

1215000
u8

)

(3.15)

and model the full functions by Padé approximants. Using the formulae

C(u) = exp

∫

duDC(u),
d

du
f(u) =

∫

du
C(u)

u2
, (3.16)
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Padé Singularities Zeroes Residues

[0, 6] ± 1.8356 0.07486

± (0.2112 ± 1.7192 i)

[2, 4] ± 1.6995 ± 2.8474 0.05656

± 1.5674 i

[4, 2] ± 9.9475 i ± (1.1253 ± 1.2410 i)

[0, 8] ± 1.6930 0.06080

± 1.4349 i

± (0.9152 ± 1.6609 i)

[2, 6] ± 1.4893 ± 1.7142 0.02888

± 1.5209 i

± 4.2104

[4, 4] ± 1.5502 ± 1.9430 0.03792

± 1.4997 i ± 2.2802 i

[6, 2] ± 0.1308 i ± 0.1308 i

± (1.1278 ± 1.2384 i)

Padé Singularities Zeroes Residues

[0, 6] ± 3.1022 0.13287

± 1.6250 i

[2, 4] ± 3.0636 ± 3.0406

± 1.6228 i

[4, 2] ± 1.9628 i ± (0.9730 ± 1.7187 i)

[0, 8] ± 2.0270 0.05936

± 1.4583 i

± (1.0967 ± 1.5608 i)

[2, 6] ± 2.8687 ± 0.4335 i 0.11573

± 0.4335i i

± 1.6505i

[4, 4] ± 1.5084 ± 1.5762

± 1.4023 i ± 1.5976 i

[6, 2] ± 0.8961 i ± 0.8989 i

± (1.2985 ± 1.5916 i)

Table 1: Singularities, zeroes and residues of L + M = 6, 8 Padé approximants for Nt = 2 (top)

and Nt = 4 (bottom). Residues are only given for those singularities that enter the estimates for

βc, table 2.

the energy density can be reconstructed from the Padé approximants to DC(u). As an

example, we show the L + M = 4, 6, 8 approximants for the Nt = 2 lattice in figure 3

(right). Clearly, this sequence of approximants shows improved convergence compared to

that of the bare series.

The singularities in DC(u), indicated by zeroes of the denominator, together with the

zeroes of the resulting approximants are shown in table 1 for Nt = 2, 4, respectively. Sin-
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Nt α βc βc (Monte Carlo)

1 0.061(38) 0.92(15) 0.85997(10) [18]

2 0.052(19) 1.65(35) 1.880(3) [19]

3 0.078(50) 2.26(63) 2.177(3) [19]

4 0.102(37) 2.66(54) 2.299(6) [19]

Table 2: Estimates for the critical coupling βc and the critical exponent of the deconfinement

phase transition. The exponent for 3d Ising universality is α = 0.12.

gularities in the immediate neighbourhood of a zero of the same approximant are typically

artefacts and unstable under variation of the approximant. However, for Nt = 2 several ap-

proximants show poles around β = 1.5 without zeroes in the immediate vicinity, indicating

that the full function indeed has a singluarity on the real axis in this region. For Nt = 4,

on the other hand, the pole near β = 1.5 is accompanied by a zero and not to be taken

seriously. The next nearest pole on the real axis is instead around β = 2. A priori it is not

possible to judge which approximants are better than others. The scatter in the results

is thus a measure for the systematic error associated with the Padé procedure. Moreover,

there is also a scatter between approximants based on different orders of the underlying

series. With increasing order, the approximants display more and more singularities which

should eventually accumulate near the true singularity structure.

To take these systematic effects into account, we estimate βc by averaging over the

lowest lying real singularities obtained from the two highest order approximants, i.e. L +

M = 4, 6 for Nt = 1 and L + M = 6, 8 for Nt = 2 − 4. To quantify the scatter due to

the systematic uncertainties we quote (βmax
c − βmin

c )/2 as an error estimate. The same

procedure is followed for the residues, and the results are collected in table 2. Since the

series are still short, the predictions for the critical coupling are not yet very accurate,

and those for the critical exponent even less so. Note, however, that a first order phase

transition has α = 0, whereas a second order transition in the 3d Ising universality class

has α = 0.12. Our results clearly favour the latter, especially as the lattice becomes finer.

3.3 Comparison with Monte Carlo data

It is now interesting to compare the results from the strong coupling series with Monte

Carlo simulations. The thermodynamic quantity most easily accessible by Monte Carlo is

the energy density, which is simply the expectation value of the plaquette,

e(β) =
1

6

d

dβ
f(β) = 〈Tr Up 〉Nt

− 〈Tr Up 〉Nt=∞, (3.17)

where again the zero temperature (infinite Nt) piece is subtracted for renormalisation. As

we have seen, in the low beta region of the deconfined phase, the corresponding values are

exponentially small, and very high statistics runs are necessary in order to get significant

results for a quantitative comparison. For the infinite volume vacuum lattice we have

taken 124, and Ns = 12, Nt = 1, 2, 3, 4 for the finite T lattices. On the Nt = 2 lattice up to
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Figure 4: Comparison of Monte Carlo data for Nt = 2 (left) and Nt = 3 (right) with Padé

approximants from the strong coupling series.

1.5 × 106 field configurations were generated to achieve sufficient accuracy, for the larger

Nt’s this gets scaled down accordingly.

We compare these data with the best estimate based on the strong coupling series,

i.e. the Padé approximants to the highest available order in the logarithmic derivative of

the heat capacity. Detailed results for Nt = 2, 3 are shown in figure 4. The different curves

correspond to different approximants to the same order, and thus serve as an error band

quantifying the uncertainties associated with the Padé procedure, thus giving a valuable

error estimate. We observe quantitative agreement with the lattice data all the way up to

the lowest estimates of βc. For Nt = 1, 4 we have checked at a few points that a similar

picture obtains. Thus, the error estimate based on our Padé analysis appears to be reliable

and announces the breakdown of the validity of the series.

4. Screening masses

Screening masses are defined by the exponential decay of the spatial correlation func-

tion of suitable operators. An overview regarding definition, quantum numbers and nu-

merical results can be found in [20]. Here we consider the colour-electric field correlator

〈Tr F a
0i(x)Tr F a

0i(y) 〉, which is in the JPC
T = 0++

+ channel (T denotes reflection in Euclidean

time) containing the ground state and the mass gap. On the lattice, this corresponds to a

correlation of temporal plaquettes, and the quantum numbers under the point group D4
h

are A++
1 .

Temporarily assigning separate gauge couplings to all plaquettes, the correlator can

be defined as [7]

C(z) = 〈Tr Up1
(0) Tr Up2

(z)〉 = N2 ∂2

∂β1∂β2
ln Z(β, β1β2)

∣

∣

∣

∣

β1,2=β

. (4.1)

At zero temperature the exponential decay is the same as for correlations in the time

direction, and thus determined by the glueball masses, the lowest of which may be extracted
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z

Nt

Figure 5: Graphs contributing to the lowest order of the expansion of the screening mass at

vanishing and finite temperature. The correlated plaquettes are black.

as

m = − lim
z→∞

1

z
ln C(z). (4.2)

The leading order graphs for the strong coupling series at zero temperature are shown in

figure 5 (left). This leads to the lowest order contribution:

C(z) = Au4z = Ae−msz. (4.3)

Thus, to leading order for the glueball mass is ms = −4 ln u(β).

Now we switch on a physical temperature, i.e. keep the lattice volume compact in

the time direction. As in the case of the free energy, we are here only interested in the

temperature effects, i.e. in the mass difference

∆m(T ) = m(T ) − m(0) = − lim
z→∞

1

z
[ln C(T ; z) − ln C(0; z)] (4.4)

= − lim
z→∞

[

ln

(

1 +
∆C(T ; z)

C(0; z)

)]

, (4.5)

with ∆C(T ; z) = C(T ; z) − C(0; z). A typical graph contributing in lowest order to this

difference is shown in figure 5 (right). Summing up all leading and next-to-leading order

graphs gives

∆m(T ) = −
2

3
Nt u4Nt−6 cNt (1 + 4u2), (4.6)

i.e. the screening masses decrease compared to their T = 0 values. As in the case of the free

energy, due to the difference only Nt-dependent higher orders contribute to the temperature

dependence of screening masses. Again, the leading order result is generic for all SU(N)

and quantum number channels. We conclude that in the confinement phase the lowest

screening masses in each quantum number channel should be close to the corresponding

zero temperature particle masses, with a significant temperature dependence showing up

only near Tc. This explains the findings of numerical investigations of the lowest screening

mass in SU(3) gauge theory, which for temperatures as high as T = 0.97Tc see very little

temperature dependence, ∆m(T )/m(0)>∼ 0.83 [21].

5. Conclusions

We have explored the possibilities of Euclidean strong coupling expansions for finite tem-

perature lattice Yang Mills theories in the confined phase. The general formalism applying
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to zero temperature calculations can be taken over to this case, with the compact time

dimension affecting the type and number of graphs that contribute to a certain quantity.

As a consequence, temperature effects on the free energy density and screening masses

appear only at an Nt-dependent higher order and vanish exponentially as β = 2N/g2 → 0.

This explains the numerically observed exponential smallness of the pressure and the near

temperature independence of screening masses in the confined phase as a typical strong

coupling phenomenon.

We have explicitly calculated the first five terms of the series for the free energy density

in the case of SU(2). To the leading two orders, the result agrees with that of an ideal

glueball gas. This demonstrates that in the confined phase the quasi-particles indeed

correspond to the T = 0 hadron excitations, as is typically assumed in hadron resonance

gas models. For lattices with Nt = 1 − 4, we have analysed the series with the help of

Padé approximants and estimated the critical couplings βc of the deconfinement phase

transition. Since the series are still relatively short, those results are not very accurate

yet. However, within the estimated errors they are consistent with the critical couplings

observed in Monte Carlo simulations. Moreover, up to the lowest estimated values of βc

the Padé approximants give a quantitative description of the Monte Carlo data for the

equation of state.

In conclusion, the strong coupling expansion offers valuable qualitative insight into

temperature effects of the fully interacting, non-perturbative theory in the confinement

phase. We are currently extending this work to the gauge group SU(3).
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